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Brief Communication

The most widely used procedures for titrating avian influ-
enza virus (AIV; species Influenza A virus) utilize 5 embryo-
nating chicken eggs (ECEs) per dilution to calculate mean 
ECE infectious dose (EID

50
) based on the method of Reed–

Muench (RM).11 Specific pathogen–free and specific anti-
body–negative ECEs are generally the preferred culture 
method for AIV because they are typically the most sensitive 
and permissive for AIV replication.7,8 However, ECEs are 
resource intensive because of cost and space requirements. 
Reducing the number of ECEs needed for AIV titration 
would reduce costs and increase efficiency.

To our knowledge, there are no published studies on the 
precision of virus concentration estimates using this method. 
The precision of virus concentration estimates depends on 
the number of ECEs used as well as the dose-response rela-
tionship between the virus and host system. In addition, 
although the RM method is commonly used to estimate virus 
titers because of its simplicity and a parametric dose-response 
curve is not assumed, very few studies have evaluated the 
variance of the estimated titers or appropriate numbers of 
samples per dilution. Brown derived formulas for estimating 
the variance of the RM calculation based on a propagation of 
error formula and binomial distribution, which is appropriate 
when the number of samples per dilution is large (i.e., >5).3 
A formula has been developed to approximate the variance 
of the RM estimate when the logistic dose-response model is 
appropriate.10

Therefore, to determine how using 3 ECEs per dilution 
affects precision for titrating AIV, we fit datasets from real 
titrations into various parametric dose-response models. The 
dose-response models were then used to simulate the number 
of infected ECE at different serial dilutions and to estimate 
the precision of the virus concentration estimate (i.e., the 
standard deviation [SD] of the error between input and esti-
mated virus concentration and width of the 95% confidence 
interval [CI]).

AIVs were obtained from the repository at the U.S. 
National Poultry Research Center, U.S. Department of 
Agriculture, Agricultural Research Service (Athens, GA). 
Eight low-pathogenic (LP) and 10 highly pathogenic iso-
lates from both domestic and wild birds were included 
(Table 1). Each virus was titrated using standard methods 
as described12 using 6 dilutions per isolate and 5 ECEs per 
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Abstract. Embryonating chicken eggs (ECEs) are among the most sensitive laboratory host systems for avian influenza 
virus (AIV) titration, but ECEs are expensive and require space for storage and incubation. Therefore, reducing ECE use would 
conserve resources. We utilized statistical modeling to evaluate the accuracy and precision of AIV titration with 3 instead of 
5 ECEs for each dilution by the Reed–Muench method for 50% endpoint calculation. Beta-Poisson and exponential dose-
response models were used in a simulation study to evaluate observations from actual titration data from 18 AIV isolates. The 
reproducibility among replicates of a titration was evaluated with one AIV isolate titrated in 3 replicates with the beta-Poisson, 
exponential, and Weibull dose-response models. The standard deviation (SD) of the error between input and estimated virus 
titers was estimated with Monte Carlo simulations using the fitted dose-response models. Good fit was observed with all 
models that were utilized. Reducing the number of ECEs per dilution from 5 to 3 resulted in the width of the 95% confidence 
interval increasing from ±0.64 to ±0.75 log

10
 50% ECE infectious doses (EID

50
) and the SD of the error increased by 0.03 

log
10

 EID
50

. Our study suggests that using fewer ECEs per dilution is a viable approach that will allow laboratories to reduce 
costs and improve efficiency.
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dilution. In most of these experiments, the serial dilutions 
ranged from 10-4 to 10-9.

A simulation study was performed to estimate the precision 
of virus concentration estimates obtained by the RM method 
using 3 or 5 ECEs per dilution. First, the maximum-likelihood 
parameters were estimated using the ECE titration data for 2 
dose-response models: the exponential dose-response model 
(equation 1) and the beta-Poisson dose-response model (equa-
tion 2). The fitted dose-response curves were then used to 
simulate the number of infected eggs at various serial dilutions 
and to estimate the error (difference between input and esti-
mated virus titers) applying the RM method.

 P rDinf
exp exp= − −( )1  (1)

Table 1. Dose-response model parameters and goodness-of-fit for avian influenza virus titration in embryonating chicken eggs.

Isolate

Exponential dose-response Beta-Poisson dose-response model

Titer
(log

10
 EID

50
) AIC

Residual sum 
of squares 
(Pearson)

Titer
(log

10
 EID

50
) α β AIC

Residual sum 
of squares 
(Pearson)

A/NOPI/WA/40964/2014 H5N2 
HP

6.7 4.70 0.54 6.7 818.8 1181.3 6.70 0.54

A/turkey/Italy/4580/1999 H7N1 
HP

8.5 5.35 1.85 8.5 819.2 1180.9 7.35 1.86

A/gyrfalcon/WA/41088/2014 
H5N8 HP

8.9 4.18 0.03 8.9 819.1 1180.8 6.18 0.03

A/chicken/IA/13388/2015 H5N2 
HP

8.9 4.18 0.03 8.9 819.1 1180.8 6.18 0.03

A/chicken/Chile/176822/2002 
H7N3 HP

6.7 4.70 0.54 6.7 818.8 1181.3 6.70 0.54

A/chicken/BC/314514-2/2004 
H7N3 HP

6.4 5.83 0.18 6.4 5.1 6.8 7.81 0.14

A/chicken/BC/314514-2004 H7N3 
HP

6.8 7.96 3.52 6.8 818.9 1181.2 9.96 3.52

A/turkey/Italy/4580/1999 H7N1 
HP

7.1 5.06 0.51 7.1 818.9 1181.0 7.06 0.51

A/shearwater/Australia/2576/1979 
H15N6 LP

6.4 5.83 0.18 6.4 5.3 7.1 7.81 0.14

A/turkey/IN/1403-1/2016 H7N8 
HP

6.5 7.56 1.82 6.7 1.3 1.4 8.75 0.57

A/chicken/Israel/215/2007 H9N2 
LP

6.7 4.70 0.54 6.7 818.8 1181.3 6.70 0.54

A/chicken/Israel/1163/2011 H9N2 
LP

6.7 4.70 0.54 6.7 818.8 1181.3 6.70 0.54

A/BWT/LA/166B/1988 H4N6 LP 6.7 4.70 0.54 6.7 818.8 1181.3 6.70 0.54
A/chicken/AL/1/1975 H4N1 LP 7.3 5.36 0.90 7.3 819.0 1181.0 7.36 0.90
A/Mallard/OH/421/1987 H7N8 LP 5.8 4.75 0.32 5.9 817.0 1183.0 6.76 0.32
A/chicken/PA/25125/1983 H5N2 

LP
7.5 7.54 1.81 7.7 1.2 1.3 8.71 0.54

A/chicken/Hidalgo/232/1994 
H5N2 LP

6.1 5.06 0.52 6.1 818.6 1181.3 7.07 0.52

A/chicken/Jalisco/CPA-
12883/2012 H7N3 HP

5.1 57.85 1,630.45 6.8 0.3 0.1 14.10 3.85

AIC = Akaike information criterion; EID
50

 = 50% egg infectious dose; HP = highly pathogenic; LP = low pathogenic.

In the exponential dose-response model, Pinf
exp  is the proba-

bility of infection, D is the dose, and r is a constant probabil-
ity of infection per unit and is equal to ln(2) when the dose D 
is expressed in units of EID

50
. The dose D for each isolate 

was fit into the model using a maximum-likelihood estima-
tion approach and the exponential dose-response model.

The beta-Poisson model (equation 2) is a 2-parameter 
dose-response model that has been used previously to model 
animal viruses.5

 P
D

inf
beta = − +











−

1 1
β
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 (2)

When the dose D is measured in EID
50

, the parameters β and 
α are related by,
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In the beta-Poisson response model, the dose D and the 
parameter α for each strain were fit using maximum-likeli-
hood estimation. The parameter β was than calculated using 
equation 3. Optimization for the maximum likelihood esti-
mates was performed using the package optimx in R (www.
rproject.org). The relative goodness-of-fit between the dif-
ferent models was assessed by Akaike information criterion 
(AIC)1 and the sum of squared Pearson residuals.

The goodness-of-fit models for the exponential and beta-
Poisson models were virtually identical with 15 of 18 iso-
lates as evidenced by the similar estimated dose and Pearson 
residual sum of squares (Table 1). In 2 of the 3 cases in which 
the beta-Poisson resulted in an improved Pearson residual 
sum of squares, the AIC was still lower with the exponential 
dose-response model. This indicates that the improvement in 
fit is not substantial enough to justify the additional parame-
ter in the beta-Poisson model. Note that the beta-Poisson 
dose-response model converges to the exponential dose-
response model as the parameter α becomes large.

Goodness-of-fit by the models varied among the isolates. 
The Pearson residual sum of squares was >1.0 for 5 isolates 
with the exponential dose-response model, and the Pearson 
residual sum of squares was >1.0 with the beta-Poisson 
model for 3 of the same isolates (Table 1). This is likely 
because of variability that can be introduced from the titra-
tion process (e.g., the accuracy of dilutions, biological varia-
tion in the susceptibility of individual embryos to infection, 
inoculation accuracy, and isolate replication efficiency in 
ECE), specifically, for the isolate with a uniquely high resid-
ual of 1630.45. In this case, there was one hemagglutination-
positive egg at 10-6, but none at 10-5, which is likely an 
artifact of a laboratory dilution error or unrecognized bacte-
rial contamination.

According to these models, the SD of titration increases 
by 0.08 and 0.09 log

10
 EID

50
 with 3 instead of 5 ECEs per 

dose for the exponential and beta-Poisson dose-response 
models, respectively, and the width of the 2-sided 95% CI 
increased by 0.14 log

10
 EID

50
 with the exponential dose-

response model and 0.17 log
10

 EID
50

 with the beta-Poisson 
dose-response model (Supplementary Table 1). This indi-
cates that the precision is only affected minimally when the 
error in a titration would likely be no >0.14–0.17 log

10
 EID

50
 

above or below the titration with 5 ECEs per dilution when 
using 3 ECEs per dilution.

Monte Carlo simulation is beneficial to directly estimate 
the error (defined for our study as the difference between 
input and estimated virus titers) in cases in which a small 
number of replicates are tested per dose, and was applied to 
estimate error based on the dose-response models. The input 
dose C was simulated as 10unifom(5.5-7.5) EID

50
. The virus dose 

was then calculated at 6 serial dilutions (10-4–10-9 of input 

dose C). At each dilution, the probability of an inoculated 
ECE being infected was calculated according to the 3 fitted 
dose-response models. The number of infected ECEs was 
simulated using a binomial distribution, with the total num-
ber of inoculated ECE per dilution N as either 5 or 3. The 
estimated virus dose λ was then calculated by applying the 
RM method. The difference between the input dose C and 
estimated virus dose λ in each simulation iteration was 
recorded as the outcome variable. The SD of the difference 
(C – λ) and the 2-sided 95% CI were reported as measures of 
the precision of the estimated virus concentration. The simu-
lation model was implemented using Excel (Microsoft, Red-
mond, WA) with @Risk (Palisade, Ithaca, NY) with 10,000 
iterations for each scenario.

Next, additional replicates were performed for a single 
isolate to evaluate reproducibility and to provide more infor-
mation by which to evaluate the difference in fit among dif-
ferent dose-response models. Three replicates were 
completed with independent sets of virus dilutions prepared 
for each replicate. Dilutions from 10-4 through 10-9 of the A/
turkey/NY/15086-3/1994 H7N2 LPAIV isolate (5 ECEs per 
dilution in each replicate) were included. Data for the same 
dilution were combined from all 3 replicates and analyzed as 
a single dataset with 15 ECEs at each dilution. Three dose-
response models, the exponential, beta-Poisson, and Weibull 
(equation 4),6 were considered.

 P TDinf
weibull exp= − −( )1 β  (4)

When the dose D is expressed in units of EID
50

, the parame-
ter T is equal to ln(2). Maximum-likelihood estimation meth-
ods were used to fit the starting virus doses D1, D2, D3, D4, 
and the unknown dose-response model parameter β.

The best fit was observed with the 2-parameter models. 
The Weibull model had a Pearson residual sum of squares of 
6.44, and beta-Poisson had a Pearson residual sum of squares 
of 8.18, versus the single-parameter model, exponential 
dose-response that had a residual sum of squares of 18.05 
(Supplementary Table 2; Supplementary Fig. 1).

In the beta-Poisson model, the SD of the error between 
input and estimated concentration only increased by 0.09 
log

10
 EID

50
. Similarly, based on the Weibull dose-response 

model, the SD of the error only increased by 0.09 log
10

 EID
50

, 
and the width of the 95% CI increased marginally from ±0.58 
to ±0.75 log EID

50
.

As an additional validation, m of n bootstrapping with 
replacement was also utilized to further characterize poten-
tial error in the RM method (a parametric dose-response 
curve was not assumed) using the combined dataset for the 
A/turkey/NY/15086-3/1994 H7N2 LPAIV (15 ECEs per 
dilution).2 Bootstrapping was applied as an additional 
approach that does not rely on simulations with a parametric 
dose-response model. In each bootstrap iteration, either 3 or 
5 ECEs were resampled of the 15 ECEs at each serial dilu-
tion. The RM method was then applied to obtain the  

www.rproject.org
www.rproject.org
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estimated virus doses for that iteration. The SD of the virus 
concentration using 3 or 5 ECEs was then estimated from 
5,000 bootstrap iterations. Based on bootstrapping, the SD of 
the estimated virus dose for 5 ECEs per dilution was 0.34 
with a 95% CI of 6.5–7.7 log

10
 EID

50
; for 3 ECEs per dilu-

tion, the SD was 0.43 with a 95% CI of 6.45–8 log
10

 EID
50

 
(Supplementary Table 3). The RM virus dose estimate for 
this dataset was 7.07 log

10
 EID

50
. Therefore, although the 

error was increased with 3 ECEs versus 5, the difference was 
only 0.09 log

10
 EID

50
, which would have minimal practical 

consequence for titer calculations.
There are several alternative methods for analyzing quan-

tal dose-response data. Parametric models in conjunction 
with maximum-likelihood estimates may result in greater 
precision and provide more information (e.g., to evaluate the 
goodness-of-fit) when there is a theoretical rationale or 
empirical evidence justifying their use.9 For example, a soft-
ware package has been developed to estimate the maximum-
likelihood estimate concentration of target cells for scenarios 
in which the exponential dose-response relationship is appro-
priate.13 However, maximum-likelihood methods require 
software for implementation and have greater complexity 
relative to nonparametric methods such as RM and Spear-
man–Kärber, which can be calculated by hand. Nonparamet-
ric methods are also appropriate when there is insufficient 
information regarding the nature of the dose-response rela-
tionship. Like any method, the RM method has its merits and 
demerits, and several authors have found the Spearman–Kär-
ber method to be superior, particularly with an asymmetrical 
tolerance distribution.4,9 We evaluated the precision of virus 
concentration estimates using RM in our study because of its 
simplicity and widespread use. The performance of the RM 
method was considered sufficiently accurate for virus titra-
tions, especially with symmetric tolerance distributions.3 
Furthermore, in simulations with the exponential dose-
response model, the SD of the virus titer estimate and the 
width of the CI were very similar for both RM and the Spear-
man–Kärber method (Supplementary Table 4).

Although our study focused on the precision of virus con-
centration estimates, our results also indicated that the RM 
method had high accuracy, because the mean difference 
between input and estimated virus concentration was very 
small in all scenarios. Both Monte Carlo and bootstrapping 
simulations returned similar estimates. Overall, using fewer 
ECEs, when possible, to titrate AIV is a simple way to 
increase efficiency and save money. Ultimately, the objective 
for titrating the virus will dictate the level of precision 
needed, but these models suggest that, for many applications, 
reducing the number of ECEs from 5 to 3 per dilution to 
calculate the log

10
 EID

50
 will provide adequate accuracy and 

precision. Finally, although our study focused on AIV, the 
results may be extrapolated to other systems using 10-fold 
serial dilutions with ECEs provided that the exponential 
dose-response model provides an acceptable fit because the 
parameter r of the exponential model is a constant (ln(2)) 
when the dose is measured in units of EID

50
.

Acknowledgments

We thank Scott A. Lee for technical assistance with this work. Men-
tion of trade names or commercial products in this manuscript is 
solely for the purpose of providing specific information and does not 
imply recommendation or endorsement by the U.S. Department of 
Agriculture. USDA is an equal opportunity provider and employer.

Declaration of conflicting interests

The authors declared no potential conflicts of interest with respect 
to the research, authorship, and/or publication of this article.

Funding

This research was supported by U.S. Department of Agriculture, 
ARS CRIS Project 6040-32000-066-00D.

Supplementary material

Supplementary material for this article is available online.

References

 1. Akaike H. A new look at the statistical model identification. 
IEEE Trans Automat Contr 1974;19:716–723.

 2. Bickel PJ, et al. Resampling fewer than n observations: gains, 
losses, and remedies for losses. In: van de Geer S, Wegkamp 
M, eds. Selected Works of Willem van Zwet. (Selected Works 
in Probability and Statistics series). New York: Springer, 
2012:267–297.

 3. Brown WF. Variance estimation in the Reed-Muench fifty per 
cent end-point determination. Am J Hyg 1964;79:37–46.

 4. Finney DJ. Statistical Method in Biological Assay. 3rd ed. 
London and High Wycombe, UK: Charles Griffin, 1978.

 5. French NP, et al. Dose-response relationships for foot 
and mouth disease in cattle and sheep. Epidemiol Infect 
2002;128:325–332.

 6. Hass C. Dose-response modeling for microbial risk. In: Schmidt 
RH, Rodrick GE, eds. Food Safety Handbook. Hoboken, NJ: 
Wiley, 2005:47–58.

 7. Moresco KA, et al. Evaluation and attempted optimization of 
avian embryos and cell culture methods for efficient isolation 
and propagation of low pathogenicity avian influenza viruses. 
Avian Dis 2010;54:622–626.

 8. Moresco KA, et al. Evaluation of different embryonating bird 
eggs and cell cultures for isolation efficiency of avian influenza 
A virus and avian paramyxovirus serotype 1 from real-time 
reverse transcription polymerase chain reaction-positive wild 
bird surveillance samples. J Vet Diagn Invest 2012;24:563–567.

 9. Myers LE, et al. Dilution assay statistics. J Clin Microbiol 
1994;32:732–739.

 10. Pizzi M. Sampling variation of the fifty percent end-point, 
determined by the Reed-Muench (Behrens) method. Human 
Biol 1950;22:151–190.

 11. Reed LJ, et al. A simple method for estimating fifty percent 
endpoints. Am J Hyg 1938;27:493–497.

 12. Spackman E, et al. Avian influenza virus isolation, propaga-
tion, and titration in embryonated chicken eggs. Methods Mol 
Biol 2014;1161:125–140.

 13. Trumble IM, et al. SLDAssay: a software package and web 
tool for analyzing limiting dilution assays. J Immunol Methods 
2017;450:10–16.


